Graphs, Dioids and Semirings New Models and Algorithms /

The origins of Graph Theory date back to Euler (1736) with the solution of the celebrated 'Koenigsberg Bridges Problem'; and to Hamilton with the famous 'Trip around the World' game (1859), stating for the first time a problem which, in its most recent version – the 'Traveli...

Full description

Main Authors: Gondran, Michel. (Author, http://id.loc.gov/vocabulary/relators/aut), Minoux, Michel. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Series:Operations Research/Computer Science Interfaces Series, 41
Subjects:
Online Access:https://doi.org/10.1007/978-0-387-75450-5
LEADER 04974nam a22006375i 4500
001 978-0-387-75450-5
003 DE-He213
005 20210616071852.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387754505  |9 978-0-387-75450-5 
024 7 |a 10.1007/978-0-387-75450-5  |2 doi 
050 4 |a QA402-402.37 
050 4 |a T57.6-57.97 
072 7 |a KJT  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a KJT  |2 thema 
072 7 |a KJM  |2 thema 
082 0 4 |a 519.6  |2 23 
100 1 |a Gondran, Michel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Graphs, Dioids and Semirings  |h [electronic resource] :  |b New Models and Algorithms /  |c by Michel Gondran, Michel Minoux. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2008. 
300 |a XX, 388 p. 26 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operations Research/Computer Science Interfaces Series,  |x 1387-666X ;  |v 41 
505 0 |a Pre-Semirings, Semirings and Dioids -- Combinatorial Properties of (Pre)-Semirings -- Topology on Ordered Sets: Topological Dioids -- Solving Linear Systems in Dioids -- Linear Dependence and Independence in Semi-Modules and Moduloids -- Eigenvalues and Eigenvectors of Endomorphisms -- Dioids and Nonlinear Analysis -- Collected Examples of Monoids, (Pre)-Semirings and Dioids. 
520 |a The origins of Graph Theory date back to Euler (1736) with the solution of the celebrated 'Koenigsberg Bridges Problem'; and to Hamilton with the famous 'Trip around the World' game (1859), stating for the first time a problem which, in its most recent version – the 'Traveling Salesman Problem' -, is still the subject of active research. Yet, it has been during the last fifty years or so—with the rise of the electronic computers—that Graph theory has become an indispensable discipline in terms of the number and importance of its applications across the Applied Sciences. Graph theory has been especially central to Theoretical and Algorithmic Computer Science, and Automatic Control, Systems Optimization, Economy and Operations Research, Data Analysis in the Engineering Sciences. Close connections between graphs and algebraic structures have been widely used in the analysis and implementation of efficient algorithms for many problems, for example: transportation network optimization, telecommunication network optimization and planning, optimization in scheduling and production systems, etc. The primary objectives of GRAPHS, DIOÏDS AND SEMIRINGS: New Models and Algorithms are to emphasize the deep relations existing between the semiring and dioïd structures with graphs and their combinatorial properties, while demonstrating the modeling and problem-solving capability and flexibility of these structures. In addition the book provides an extensive overview of the mathematical properties employed by "nonclassical" algebraic structures, which either extend usual algebra (i.e., semirings), or correspond to a new branch of algebra (i.e., dioïds), apart from the classical structures of groups, rings, and fields. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Computer organization. 
650 0 |a Combinatorics. 
650 0 |a Decision making. 
650 0 |a Computer science—Mathematics. 
650 0 |a Mathematical models. 
650 1 4 |a Operations Research, Management Science.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M26024 
650 2 4 |a Computer Systems Organization and Communication Networks.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I13006 
650 2 4 |a Combinatorics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M29010 
650 2 4 |a Operations Research/Decision Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/521000 
650 2 4 |a Discrete Mathematics in Computer Science.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17028 
650 2 4 |a Mathematical Modeling and Industrial Mathematics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14068 
700 1 |a Minoux, Michel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387523200 
776 0 8 |i Printed edition:  |z 9781441945297 
776 0 8 |i Printed edition:  |z 9780387754499 
830 0 |a Operations Research/Computer Science Interfaces Series,  |x 1387-666X ;  |v 41 
856 4 0 |u https://doi.org/10.1007/978-0-387-75450-5 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)